Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Exp Gerontol ; 189: 112403, 2024 May.
Article in English | MEDLINE | ID: mdl-38490285

ABSTRACT

Walking performance and cognitive function demonstrate strong associations in older adults, with both declining with advancing age. Walking requires the use of cognitive resources, particularly in complex environments like stepping over obstacles. A commonly implemented approach for measuring the cognitive control of walking is a dual-task walking assessment, in which walking is combined with a second task. However, dual-task assessments have shortcomings, including issues with scaling the task difficulty and controlling for task prioritization. Here we present a new assessment designed to be less susceptible to these shortcomings while still challenging cognitive control of walking: the Obstructed Vision Obstacle (OBVIO) task. During the task, participants hold a lightweight tray at waist level obstructing their view of upcoming foam blocks, which are intermittently spaced along a 10 m walkway. This forces the participants to use cognitive resources (e.g., attention and working memory) to remember the exact placement of upcoming obstacles to facilitate successful crossing. The results demonstrate that adding the obstructed vision board significantly slowed walking speed by an average of 0.26 m/s and increased the number of obstacle strikes by 8-fold in healthy older adults (n = 74). Additionally, OBVIO walking performance (a score based on both speed and number of obstacle strikes) significantly correlated with computer-based assessments of visuospatial working memory, attention, and verbal working memory. These results provide initial support that the OBVIO task is a feasible walking test that demands cognitive resources. This study lays the groundwork for using the OBVIO task in future assessment and intervention studies.


Subject(s)
Gait , Walking , Humans , Aged , Cognition , Walking Speed , Attention , Task Performance and Analysis
2.
J Neurophysiol ; 130(6): 1508-1520, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37937342

ABSTRACT

Corticospinal drive during walking is reduced in older adults compared with young adults, but it is not clear how this decrease might compromise one's ability to adjust stepping, particularly during visuomotor adaptation. We hypothesize that age-related changes in corticospinal drive could predict differences in older adults' step length and step time adjustments in response to visual perturbations compared with younger adults. Healthy young (n = 21; age 18-33 yr) and older adults (n = 20; age 68-80 yr) were tested with a treadmill task, incorporating visual feedback of the foot position and stepping targets in real-time. During adaptation, the visuomotor gain was reduced on one side, causing the foot cursor and step targets to move slower on that side of the screen (i.e., split-visuomotor adaptation). Corticospinal drive was quantified by coherence between electromyographic signals in the beta-gamma frequency band (15-45 Hz). The results showed that 1) older adults adapted to visuomotor perturbations during walking, with a similar reduction in error asymmetry compared with younger adults; 2) however, older adults showed reduced adaptation in step time symmetry, despite demonstrating similar adaptation in step length asymmetry compared with younger adults; and 3) smaller overall changes in step time asymmetry was associated with reduced corticospinal drive to the tibialis anterior in the slow leg during split-visuomotor adaptation. These findings suggest that changes in corticospinal drive may affect older adults' control of step timing in response to visual challenges. This could be important for safe navigation when walking in different environments or dealing with unexpected circumstances.NEW & NOTEWORTHY Corticospinal input is essential for visually guided walking, especially when the walking pattern must be modified to accurately step on safe locations. Age-related changes in corticospinal drive are associated with inflexible step time, which necessitates different locomotor adaptation strategies in older adults.


Subject(s)
Muscle, Skeletal , Walking , Young Adult , Humans , Aged , Adolescent , Adult , Aged, 80 and over , Walking/physiology , Muscle, Skeletal/physiology , Foot , Lower Extremity , Adaptation, Physiological/physiology , Gait/physiology
3.
Front Aging Neurosci ; 14: 920475, 2022.
Article in English | MEDLINE | ID: mdl-36062156

ABSTRACT

Healthy aging is associated with reduced corticospinal drive to leg muscles during walking. Older adults also exhibit slower or reduced gait adaptation compared to young adults. The objective of this study was to determine age-related changes in the contribution of corticospinal drive to ankle muscles during walking adaptation. Electromyography (EMG) from the tibialis anterior (TA), soleus (SOL), medial, and lateral gastrocnemius (MGAS, LGAS) were recorded from 20 healthy young adults and 19 healthy older adults while they adapted walking on a split-belt treadmill. We quantified EMG-EMG coherence in the beta-gamma (15-45 Hz) and alpha-band (8-15 Hz) frequencies. Young adults demonstrated higher coherence in both the beta-gamma band coherence and alpha band coherence, although effect sizes were greater in the beta-gamma frequency. The results showed that slow leg TA-TA coherence in the beta-gamma band was the strongest predictor of early adaptation in double support time. In contrast, early adaptation in step length symmetry was predicted by age group alone. These findings suggest an important role of corticospinal drive in adapting interlimb timing during walking in both young and older adults.

4.
Neuroscientist ; 28(5): 469-484, 2022 10.
Article in English | MEDLINE | ID: mdl-34014124

ABSTRACT

Walking patterns are adaptable in response to different environmental demands, which requires neural input from spinal and supraspinal structures. With an increase in age, there are changes in walking adaptation and in the neural control of locomotion, but the age-related changes in the neural control of locomotor adaptation is unclear. The purpose of this narrative review is to establish a framework where the age-related changes of neural control of human locomotor adaptation can be understood in terms of reactive feedback and predictive feedforward control driven by sensory feedback during locomotion. We parse out the effects of aging on (a) reactive adaptation to split-belt walking, (b) predictive adaptation to split-belt walking, (c) reactive visuomotor adaptation, and (d) predictive visuomotor adaptation, and hypothesize that specific neural circuits are influenced differentially with age, which influence locomotor adaptation. The differences observed in the age-related changes in walking adaptation across different locomotor adaptation paradigms will be discussed in light of the age-related changes in the neural mechanisms underlying locomotion.


Subject(s)
Adaptation, Physiological , Walking , Adaptation, Physiological/physiology , Aging , Gait/physiology , Humans , Locomotion/physiology , Walking/physiology
5.
Exp Brain Res ; 240(2): 511-523, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34816293

ABSTRACT

Precise foot placement is dependent on changes in spatial and temporal coordination between two legs in response to a perturbation during walking. Here, we used a 'virtual' split-belt adaptation task to examine the effects of reinforcement (reward and punishment) feedback about foot placement on the changes in error, step length and step time asymmetry. Twenty-seven healthy adults (20 ± 2.5 years) walked on a treadmill with continuous feedback of the foot position and stepping targets projected on a screen, defined by a visuomotor gain for each leg. The paradigm consisted of a baseline period (same gain on both legs), visuomotor adaptation period (split: one high = 'fast', one low = 'slow' gain) and post-adaptation period (same gain). Participants were divided into 3 groups: control group received no score, reward group received increasing score for each target hit, and punishment group received decreasing score for each target missed. Re-adaptation was assessed 24 ± 2 h later. During early adaptation, the slow foot undershot and fast foot overshot the stepping target. Foot placement errors were gradually reduced by late adaptation, accompanied by increasing step length asymmetry (fast < slow step length) and step time asymmetry (fast > slow step time). Only the punishment group showed greater error reduction and step length re-adaptation on the next day. The results show that (1) explicit feedback of foot placement alone drives adaptation of both step length and step time asymmetry during virtual split-belt walking, and (2) specifically, step length re-adaptation driven by visuomotor errors may be enhanced by punishment feedback.


Subject(s)
Adaptation, Physiological , Walking , Adaptation, Physiological/physiology , Adult , Exercise Test , Feedback , Foot , Gait , Humans , Walking/physiology
6.
J Exp Biol ; 224(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34115860

ABSTRACT

The metabolic cost of walking in healthy individuals increases with spatiotemporal gait asymmetries. Pathological gait, such as post-stroke, often has asymmetry in step length and step time which may contribute to an increased energy cost. But paradoxically, enforcing step length symmetry does not reduce metabolic cost of post-stroke walking. The isolated and interacting costs of asymmetry in step time and step length remain unclear, because previous studies did not simultaneously enforce spatial and temporal gait asymmetries. Here, we delineate the isolated costs of asymmetry in step time and step length in healthy human walking. We first show that the cost of step length asymmetry is predicted by the cost of taking two non-preferred step lengths (one short and one long), but that step time asymmetry adds an extra cost beyond the cost of non-preferred step times. The metabolic power of step time asymmetry is about 2.5 times greater than the cost of step length asymmetry. Furthermore, the costs are not additive when walking with asymmetric step time and asymmetric step length: the metabolic power of concurrent asymmetry in step length and step time is driven by the cost of step time asymmetry alone. The metabolic power of asymmetry is explained by positive mechanical power produced during single support phases to compensate for a net loss of center of mass power incurred during double support phases. These data may explain why metabolic cost remains invariant to step length asymmetry in post-stroke walking and suggest how effects of asymmetry on energy cost can be attenuated.


Subject(s)
Stroke , Walking , Biomechanical Phenomena , Gait , Humans
7.
R Soc Open Sci ; 8(2): 202084, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33972880

ABSTRACT

Walking requires control of where and when to step for stable interlimb coordination. Motorized split-belt treadmills which constrain each leg to move at different speeds lead to adaptive changes to limb coordination that result in after-effects (e.g. gait asymmetry) on return to normal treadmill walking. These after-effects indicate an underlying neural adaptation. Here, we assessed the transfer of motorized split-belt treadmill adaptations with a custom non-motorized split-belt treadmill where each belt can be self-propelled at different speeds. Transfer was indicated by the presence of after-effects in step length, foot placement and step timing differences. Ten healthy participants adapted on a motorized split-belt treadmill (2 : 1 speed ratio) and were then assessed for after-effects during subsequent non-motorized treadmill and motorized tied-belt treadmill walking. We found that after-effects in step length difference during transfer to non-motorized split-belt walking were primarily associated with step time differences. Conversely, residual after-effects during motorized tied-belt walking following transfer were associated with foot placement differences. Our data demonstrate decoupling of adapted spatial and temporal locomotor control during transfer to a novel context, suggesting that foot placement and step timing control can be independently modulated during walking.

8.
Front Hum Neurosci ; 14: 568703, 2020.
Article in English | MEDLINE | ID: mdl-33192399

ABSTRACT

Human bipedal walking is a complex motor task that requires supraspinal control for balance and flexible coordination of timing and scaling of many muscles in different environment. Gait impairments are a hallmark of Parkinson's disease (PD), reflecting dysfunction of cortico-basal ganglia-brainstem circuits. Recent studies using implanted electrodes and surface electroencephalography have demonstrated gait-related brain oscillations in the basal ganglia and cerebral cortex. Here, we review the physiological and pathophysiological roles of (1) basal ganglia oscillations, (2) cortical oscillations, and (3) basal ganglia-cortical interactions during walking. These studies extend a novel framework for movement of disorders where specific patterns of abnormal oscillatory synchronization in the basal ganglia thalamocortical network are associated with specific signs and symptoms. Therefore, we propose that many gait dysfunctions in PD arise from derangements in brain network, and discuss potential therapies aimed at restoring gait impairments through modulation of brain network in PD.

9.
J Physiol ; 598(18): 4063-4078, 2020 09.
Article in English | MEDLINE | ID: mdl-32662881

ABSTRACT

KEY POINTS: The relationship between spatiotemporal gait asymmetry and walking energetics is currently under debate. The split-belt treadmill paradigm has been used to study adaptation of spatiotemporal gait parameters in relation to energetics, but it remains unclear why people reduce asymmetry in step lengths, but prefer asymmetry in step times. In this study we characterized the effects of step time asymmetry and step length asymmetry on energy cost during steady-state walking on a split-belt treadmill at increasing speed-differences. Both the optimal and preferred step time asymmetry increased with greater speed differences, while preferred step lengths remained constant and nearly symmetric. Preferred asymmetric step times were energetically optimal across all speed-difference conditions, while preferred step length asymmetry was not optimal. The findings show that humans will adopt an asymmetric gait that is associated with an energy reduction and suggest that step time asymmetry plays a dominant role in shaping the energetic cost of gait asymmetry. ABSTRACT: Healthy human walking is symmetric and economical; hemiparetic and amputee gait is often asymmetric and requires more energy. Consequently, asymmetry has been attributed to account for the added energy cost of pathological gait. But it is also possible that asymmetric gait may be adopted if it is energetically optimal under certain biomechanical and neurological constraints of the locomotor system. Here, we assessed how preferred asymmetry in step times and step lengths of healthy human gait is adapted during split-belt treadmill walking and tested the hypothesis that asymmetry is adapted to optimize metabolic energy cost. Ten healthy, young participants walked on a split-belt treadmill in three conditions in which the average belt speed was always 1.25 m s-1 and the speed difference between the belts was 0.5 m s-1 , 1.0 m s-1 and 1.5 m s-1 while a range of values of step time asymmetry and step length asymmetry were enforced. We found that preferred step time asymmetry increased with greater speed differences while preferred step length asymmetry remained constant and nearly symmetric. With increasing speed differences participants increased their preferred value of step time asymmetry to coincide with the lowest energy cost. However, our results show that preferred step length asymmetry was not optimal even with extensive experience of split-belt treadmill walking. Overall, our results indicate that humans will adopt an asymmetric gait that is associated with an energy reduction and suggest that step time asymmetry plays a dominant role in shaping the energetic cost of gait asymmetry.


Subject(s)
Adaptation, Physiological , Walking , Biomechanical Phenomena , Exercise Test , Gait , Humans
10.
J Neurophysiol ; 122(3): 1097-1109, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31339832

ABSTRACT

When walking on a split-belt treadmill where one belt moves faster than the other, the nervous system consistently attempts to maintain symmetry between legs, quantified as deviation from double support time or step length symmetry. It is known that the cerebellum plays a critical role in locomotor adaptation. Less is known about the role of corticospinal drive in maintaining this type of proprioceptive-driven locomotor adaptation. The objective of this study was to examine the functional role of oscillatory drive in relation to changes in spatiotemporal gait parameters during split-belt walking adaptation. Eighteen healthy participants adapted and deadapted on a split-belt treadmill; 13 out of 18 participants repeated the paradigm two more times to examine the effects of reexposure. Coherence analysis was used to quantify the coupling between electromyography (EMG) from the proximal (TAprox) and distal tibialis anterior (TAdist) muscle during the swing phase of walking. EMG-EMG coherence was examined within the alpha (8-15 Hz), beta (15-30 Hz), and gamma (30-45 Hz) frequencies. Our results showed that 1) beta- and gamma-band coherence (markers of corticospinal drive) increased during early split-belt walking compared with baseline walking in the slow leg, 2) beta-band coherence decreased from early to late split-belt adaptation in the fast leg, 3) alpha-, beta-, and gamma-band coherence decreased from first to third split-belt exposure in the fast leg, and 4) there was a relationship between higher beta coherence in the slow leg TA and smaller double support asymmetry. Our results suggest that corticospinal drive may play a functional role in the temporal control of split-belt walking adaptation.NEW & NOTEWORTHY This is the first study to examine the functional role of intramuscular coherence in relation to changes in spatiotemporal gait parameters during split-belt walking adaptation. We found that the corticospinal drive measured by intramuscular coherence in tibialis anterior changes with adaptation and that the corticospinal drive is related to temporal but not spatial parameters. This study may give insight as to the specific role of the motor cortex during gait.


Subject(s)
Adaptation, Physiological/physiology , Brain Waves/physiology , Gait/physiology , Learning/physiology , Motor Cortex/physiology , Muscle, Skeletal/physiology , Adult , Alpha Rhythm/physiology , Beta Rhythm/physiology , Biomechanical Phenomena , Electromyography , Female , Gamma Rhythm/physiology , Humans , Male , Young Adult
11.
Neurobiol Aging ; 78: 29-41, 2019 06.
Article in English | MEDLINE | ID: mdl-30852367

ABSTRACT

We investigated age-related differences in corticospinal control of muscle activity during normal and visually guided (VG) walking. Young (n = 15, 22.1 ± 1.7 years) and older (n = 15, 68.3 ± 2.7 years) participants performed normal walking and VG walking requiring precise foot placement based on visual cues. Coherence analysis was used to quantify coupling between electroencephalography and electromyography from the anterior tibial muscle (corticomuscular) and between the 2 ends of the anterior tibial muscle (intramuscular) at 15-50 Hz during the swing phase of walking as markers of corticospinal activity. Our results indicated that corticomuscular and intramuscular coherence was lower in older compared to young participants during both tasks. In addition, coherence was generally greater during VG than during normal walking across age groups, although during late swing, older participants drove several of the observed task-related coherence increases. Performance on the VG task was lower in older compared to young participants and was correlated with task-related corticomuscular coherence modulations within the older group. These results suggest age-related differences in the corticospinal control of walking, with possible implications for precision control of foot placement based on visual information.


Subject(s)
Aging/physiology , Gait/physiology , Healthy Aging/physiology , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Visual Perception/physiology , Walking/physiology , Adult , Aged , Cues , Electroencephalography , Electromyography , Female , Foot/physiology , Humans , Male , Young Adult
12.
Physiol Rep ; 6(3)2018 02.
Article in English | MEDLINE | ID: mdl-29405634

ABSTRACT

When we walk in a challenging environment, we use visual information to modify our gait and place our feet carefully on the ground. Here, we explored how central common drive to ankle muscles changes in relation to visually guided foot placement. Sixteen healthy adults aged 23 ± 5 years participated in the study. Electromyography (EMG) from the Soleus (Sol), medial Gastrocnemius (MG), and the distal and proximal ends of the Tibialis anterior (TA) muscles and electroencephalography (EEG) from Cz were recorded while subjects walked on a motorized treadmill. A visually guided walking task, where subjects received visual feedback of their foot placement on a screen in real-time and were required to place their feet within narrow preset target areas, was compared to normal walking. There was a significant increase in the central common drive estimated by TA-TA and Sol-MG EMG-EMG coherence in beta and gamma frequencies during the visually guided walking compared to normal walking. EEG-TA EMG coherence also increased, but the group average did not reach statistical significance. The results indicate that the corticospinal tract is involved in modifying gait when visually guided placement of the foot is required. These findings are important for our basic understanding of the central control of human bipedal gait and for the design of rehabilitation interventions for gait function following central motor lesions.


Subject(s)
Ankle/physiology , Gait , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Visual Perception , Adolescent , Adult , Beta Rhythm , Female , Gamma Rhythm , Humans , Male
13.
Hum Mov Sci ; 56(Pt B): 11-19, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29096179

ABSTRACT

Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects.


Subject(s)
Cues , Psychomotor Performance/physiology , Virtual Reality , Walking/physiology , Adult , Biomechanical Phenomena , Feedback, Sensory , Female , Humans , Learning , Male , Photic Stimulation , Young Adult
14.
J Exp Biol ; 219(Pt 18): 2809-2813, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27401760

ABSTRACT

Often, humans and other animals move in a manner that minimizes energy costs. It is more economical to walk at slow speeds, and to run at fast speeds. Here, we asked whether humans select a gait that minimizes neuromuscular effort under novel and unfamiliar conditions, by imposing interlimb asymmetry during split-belt treadmill locomotion. The walk-run transition speed changed markedly across different gait conditions: forward, backward, hybrid (one leg forward, one leg backward) and forward with speed differences (one leg faster than the other). Most importantly, we showed that the human walk-run transition speed across conditions was predicted by changes in neuromuscular effort (i.e. summed leg muscle activations). Our results for forward gait and forward gait with speed differences suggest that human locomotor patterns are optimized under both familiar and novel gait conditions by minimizing the motor command for leg muscle activation.

15.
J Physiol ; 594(19): 5673-84, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27218896

ABSTRACT

KEY POINTS: Sensory input from peripheral receptors are important for the regulation of walking patterns. Cutaneous input mediates muscle responses to deal with immediate external perturbations. In this study we focused on the role of cutaneous feedback in locomotor adaptation that takes place over minutes of training. We show that interfering with cutaneous feedback reduced adaptation to ankle perturbations during walking. These results help us understand the neural mechanisms underlying walking adaptation, and have clinical implications for treating walking impairments after neurological injuries. ABSTRACT: Locomotor patterns must be adapted to external forces encountered during daily activities. The contribution of different sensory inputs to detecting perturbations and adapting movements during walking is unclear. In the present study, we examined the role of cutaneous feedback in adapting walking patterns to force perturbations. Forces were applied to the ankle joint during the early swing phase using an electrohydraulic ankle-foot orthosis. Repetitive 80 Hz electrical stimulation was applied to disrupt cutaneous feedback from the superficial peroneal nerve (foot dorsum) and medial plantar nerve (foot sole) during walking (Choi et al. 2013). Sensory tests were performed to measure the cutaneous touch threshold and perceptual threshold of force perturbations. Ankle movement were measured when the subjects walked on the treadmill over three periods: baseline (1 min), adaptation (1 min) and post-adaptation (3 min). Subjects (n = 10) showed increased touch thresholds measured with Von Frey monofilaments and increased force perception thresholds with stimulation. Stimulation reduced the magnitude of walking adaptation to force perturbation. In addition, we compared the effects of interrupting cutaneous feedback using anaesthesia (n = 5) instead of repetitive nerve stimulation. Foot anaesthesia reduced ankle adaptation to external force perturbations during walking. The results of the present study suggest that cutaneous input plays a role in force perception, and may contribute to the 'error' signal involved in driving walking adaptation when there is a mismatch between expected and actual force.


Subject(s)
Adaptation, Physiological , Walking/physiology , Adult , Anesthetics, Local/pharmacology , Ankle Joint/physiology , Electric Stimulation , Electromyography , Feedback, Physiological , Female , Foot/innervation , Foot/physiology , Humans , Lidocaine/pharmacology , Male , Muscle, Skeletal/physiology , Peroneal Nerve/physiology , Tibial Nerve/physiology , Young Adult
16.
J Neurophysiol ; 115(4): 2014-20, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26864768

ABSTRACT

Voluntary limb modifications must be integrated with basic walking patterns during visually guided walking. In this study we tested whether voluntary gait modifications can become more automatic with practice. We challenged walking control by presenting visual stepping targets that instructed subjects to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence-nonspecific learning during walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 yr,n= 20) could learn a specific sequence of step lengths over 300 training steps. Younger children (age 6-10 yr,n= 8) had lower baseline performance, but their magnitude and rate of sequence learning were the same compared with those of older children (11-16 yr,n= 10) and healthy adults. In addition, learning capacity may be more limited at faster walking speeds. To our knowledge, this is the first study to demonstrate that spatial sequence learning can be integrated with a highly automatic task such as walking. These findings suggest that adults and children use implicit knowledge about the sequence to plan and execute leg movement during visually guided walking.


Subject(s)
Learning , Visual Perception , Walking/physiology , Adolescent , Adult , Age Factors , Biomechanical Phenomena , Child , Female , Humans , Leg/physiology , Male , Psychomotor Performance , Reaction Time
17.
Cereb Cortex ; 25(7): 1981-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24532321

ABSTRACT

Locomotor patterns are adapted on a trial-and-error basis to account for predictable dynamics. Once a walking pattern is adapted, the new calibration is stored and must be actively de-adapted. Here, we tested the hypothesis that storage of newly acquired ankle adaptation in walking is dependent on corticospinal mechanisms. Subjects were exposed to an elastic force that resisted ankle dorsiflexion during treadmill walking. Ankle movement was adapted in <30 strides, leading to after-effects on removal of the force. We used a crossover design to study the effects of repetitive transcranial magnetic stimulation (TMS) over the primary motor cortex (M1), compared with normal adaptation without TMS. In addition, we tested the effects of TMS over the primary sensory cortex (S1) and premotor cortex (PMC) during adaptation. We found that M1 TMS, but not S1 TMS and PMC TMS, reduced the size of ankle dorsiflexion after-effects. The results suggest that suprathreshold M1 TMS disrupted the initial processes underlying locomotor adaptation. These results are consistent with the hypothesis that corticospinal mechanisms underlie storage of ankle adaptation in walking.


Subject(s)
Adaptation, Physiological/physiology , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods , Walking/physiology , Ankle/physiology , Biomechanical Phenomena , Cross-Over Studies , Electromyography , Evoked Potentials, Motor/physiology , Female , Humans , Male , Muscle, Skeletal/physiology , Somatosensory Cortex/physiology , Young Adult
18.
Exp Brain Res ; 228(3): 377-84, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23702971

ABSTRACT

The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force output. We used repetitive electrical stimulation of the superficial peroneal (foot dorsum) and medial plantar nerves (foot sole) to disrupt cutaneous afferent input in 8 healthy subjects. We measured the effects of repetitive nerve stimulation on (1) tactile thresholds, (2) performance in an ankle force-matching and (3) an ankle position-matching task. Additional force-matching experiments were done to compare the effects of transient versus continuous stimulation in 6 subjects and to determine the effects of foot anesthesia using lidocaine in another 6 subjects. The results showed that stimulation decreased cutaneous sensory function as evidenced by increased touch threshold. Absolute dorsiflexion force error increased without visual feedback during peroneal nerve stimulation. This was not a general effect of stimulation because force error did not increase during plantar nerve stimulation. The effects of transient stimulation on force error were greater when compared to continuous stimulation and lidocaine injection. Position-matching performance was unaffected by peroneal nerve or plantar nerve stimulation. Our results show that cutaneous feedback plays a role in the control of force output at the ankle joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases.


Subject(s)
Ankle/physiology , Muscle, Skeletal/innervation , Neurons, Afferent/physiology , Touch Perception/physiology , Adult , Electric Stimulation , Female , Foot/innervation , Humans , Male , Movement/physiology , Muscle, Skeletal/physiology , Peroneal Nerve/physiology , Posture , Sensory Thresholds/physiology , Skin
19.
J Neurophysiol ; 106(1): 437-48, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21543754

ABSTRACT

Postural stability depends on interactions between the musculoskeletal system and neural control mechanisms. We present a frontal plane model stabilized by delayed feedback to analyze the effects of altered stance width on postural responses to perturbations. We hypothesized that changing stance width alters the mechanical dynamics of the body and limits the range of delayed feedback gains that produce stable postural behaviors. Surprisingly, mechanical stability was found to decrease as stance width increased due to decreased effective inertia. Furthermore, due to sensorimotor delays and increased leverage of hip joint torque on center-of-mass motion, the magnitudes of the stabilizing delayed feedback gains decreased as stance width increased. Moreover, the ranges of the stable feedback gains were nonoverlapping across different stance widths such that using a single neural feedback control strategy at both narrow and wide stances could lead to instability. The set of stable feedback gains was further reduced by constraints on foot lift-off and perturbation magnitude. Simulations were fit to experimentally measured kinematics, and the identified feedback gains corroborated model predictions. In addition, analytical gain margin of the linearized system was found to predict step transitions without the need for simulation. In conclusion, this model offers a method to dissociate the complex interactions between postural configuration, delayed sensorimotor feedback, and nonlinear foot lift-off constraints. The model demonstrates that stability at wide stances can only be achieved if delayed neural feedback gains decrease. This model may be useful in explaining both expected and paradoxical changes in stance width in healthy and neurologically impaired individuals.


Subject(s)
Feedback, Physiological , Models, Biological , Postural Balance/physiology , Biomechanical Phenomena/physiology , Computer Simulation , Feedback, Sensory/physiology , Female , Hip Joint/physiology , Humans , Male , Torque , Young Adult
20.
Neuropsychologia ; 48(5): 1192-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20018199

ABSTRACT

Hemispherectomy is currently the only effective treatment for relieving constant seizures in children with severe or progressive unilateral cortical disease. Although early hemispherectomy has been advocated to avoid general dysfunction due to continued seizures, it remains unclear whether age at surgery affects specific sensorimotor functions. Little is know about the anatomical status of sensorimotor pathways after hemispherectomy and how it might relate to sensorimotor function. Here we measured motor function and sensory thresholds of the upper and lower limbs in 12 hemispherectomized patients. Diffusion tensor imaging (DTI) was used to determine status of brainstem corticospinal tracts and medial lemniscus. Hemispherectomy subjects showed remarkable recovery in both sensory and motor function. Many patients showed normal sensory vibration thresholds. Within the smaller Rasmussen's subgroup, we saw a relationship between age at surgery and sensorimotor function recovery (i.e. earlier was better). Anatomically, we found marked asymmetry in brainstem corticospinal tracts but preserved symmetry in the medial lemniscus, which may relate to robust sensory recovery. Age at surgery predicted anatomical status of brainstem sensorimotor tracts. In sum, we found that age at surgery influences anatomical changes in brainstem motor pathways, and may also relate to sensorimotor recovery patterns.


Subject(s)
Brain Diseases/physiopathology , Brain Diseases/surgery , Brain Stem/physiopathology , Brain Stem/surgery , Efferent Pathways/physiopathology , Efferent Pathways/surgery , Feedback, Sensory/physiology , Hemispherectomy/methods , Neural Pathways/physiopathology , Adolescent , Adult , Child , Diffusion Tensor Imaging , Female , Humans , Magnetic Resonance Imaging , Male , Models, Biological , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...